توابع ناپیوسته از جبرهای لیپشیتس و عملگرهای حافظ مجزایی بین جبرهای کوچک لیپشیتس
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
- نویسنده معصومه قادری عقیده
- استاد راهنما داود علیمحمدی سیروس مرادی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1387
چکیده
در این پایان نامه با فرض این که (x,d) یک فضای متری فشرده باشد، ابتدا به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip?(x,d) برای 1 < ? ?0 و جبرهای کوچک لیپشیتس lip?(x,d) برای 1 < ? < می پردازیم. سپس ایده آل های ماکسیمال این جبر ها را بررسی می کنیم. هم چنین وجود نگاشت های خطی، همریختی ها و مشتق های ناپیوسته بر lip?(x,d) را اثبات می کنیم. در ادامه با فرض این که (x,d) و(y,?) دو فضای متری فشرده باشند، با معرفی عملگرهای خطی حافظ مجزایی از lip?(x,d) به lip?(y,?)، وجود این نوع عملگرها را اثبات نموده و حالت هایی که این عملگرها پیوسته یا ناپیوسته اند، را مورد بررسی قرار می دهیم.
منابع مشابه
شرایط کافی برای چگال بودن در جبرهای لیپشیتس توسیع یافته
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
متن کاملیکریختی های ترتیبی جبرهای کوچک لیپشیتس و بازتابی های جبری گروه طولپایی بعضی از فضاهای توابع لیپشیتس
در این پایان نامه، ابتدا جبرهای لیپشیتس (x,d) lip_? برای ??[0,1?[ و جبرهای کوچک لیپشیتس (x,d) lip_? برای (0,1) ?? را معرفی می کنیم وبرخی از خواص آن ها را بیان می کنیم .
جبرهای لیپشیتس بردار- مقداری
فرض می کنیمx یک فضای توپولوژیکی فشرده ی هاسدورف بوده و eیک جبر باناخ تعویض پذیر یکانی باشد.دراین پایان نامه ابتدا به معرفی جبر باناخ توابع بردار-مقداری پیوسته ی (c(x,e می پردازیم وفضای ایدآل ماکسیمال آنراتعیین می کنیم.سپس xیک مجموعه ی فشرده درn-فضای مختلط درنظر می گیریم وجبرباناخ توابع بردار-مقداری چندجمله ای (p(x,eرا مورد مطالعه قرار می دهیم وفضای ایدآل ماکسیمال آن را مشخص می کنیم .درادامه فرض...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023